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Abstract: In the recent years, the quality and the usability of database systems have received more attention. The 

performance of database systems has gained more improvement in the past decades so, they are more and more difficult 

to use. The why-not questions are needs of user to know why her expected tuples are not shown up in the query results 

i.e. the features of explaining missing tuples in database queries. Database system is having the capability that enables 

users to seek clarifications on expected query results as well as the absence of expected tuples (i.e. missing tuples). It 

would be very helpful to users if they referred why-not questions to seek clarifications on expected tuples in query 

results. There are two algorithms to answer why-not questions efficiently. These algorithms are able to return high 

quality explanations efficiently. Many users love to pose those kinds of queries when they are making multi-criteria 

decisions and user need approximate information from the huge Database. 
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I. INTRODUCTION 
 

 

In recent years, there is a growing effort to improve the 

usability of database systems. A search engine can help a 

user to answer a question by locating information sources 

based on keywords. The feature of explaining missing 

tuples in database queries is called why-not questions. It 

has received growing attentions in recent years. A why- 

not question is being posed when a user wants to know 

why her expected tuples are not shown up in the query 

result. Why-not questions are helpful to users to seek 

clarification on missing tuples from the result. Recently, a 

certain work is done on answering why- not questions on 

traditional relational/SQL queries. However, none of those 

can answer why-not questions on preference queries like 

top-k queries yet. Answering why-not questions on top-k 

queries is useful because users love to pose top-k queries 

when making multi-criteria decisions. However, they may 

feel lost when their expected answers are missing in the 

query result and they may want to know why: Is it because 

I have set k too small?, Or I have set my weightings 

badly?, Or because of both? For Answering the why-not 

questions on top-k queries there are two algorithms. 

Namely, a why-not top-k question and a why-not 

dominating question. Top-k dominating queries or simply 

dominating queries is a variant of top-k query that users 

may pose why-not questions on. The top-k dominating 

query returns k data objects which dominate the highest 

number of objects in a dataset. While a top-k dominating 

query frees users from specifying the set of weightings by 

ranking the objects based on the number of objects that 

they could dominate (e.g., if object x dominates nine 

objects while object y dominates four objects, then x ranks 

higher than y). For example, the agent of Jeremy Lin, a hot 

NBA player this year, may pose a top-100 dominating 

query about the best guards in NBA history. When Lin is 

not in the result, his agent may want to know the reason: Is 

that I have set my k too small? Finding the best 

explanations is actually computationally expensive for 

both the algorithms. In the why-not top-k question users 

can provide W as input, which slightly limits its 

practicability and in why-not top-k dominating question 

users need not to provide W as input. In the why-not 

paradigm, users are quite clear with which are the missing 

objects and explained why those objects are missing. 
 

II. LITERATURE SURVEY 
 

SQL Query Recommendation system aims at assisting 

non-expert users of scientific databases by tracking their 

querying behavior and generating personalized query 

recommendations. The system is supported by two 

recommendation engines and the underlying 

recommendation algorithms. First approach identifies 

potentially interesting parts of the database related to the 

corresponding data analysis task by locating those 

database parts that were accessed by similar users in the 

past. The second algorithm identifies structurally similar 

queries posted by the current user. Both approaches result 

in a recommendation set of SQL queries that is provided 

to the user to modify or directly post to the database. The 

drawback of this is, it mainly focus on the improving the 

Usability and the Quality of the database systems [2]. 

SnipSuggest aims to help the increasing population of 

non-expert database users, who need to perform complex 

analysis on their large-scale datasets, but it is difficult to 

writing SQL queries. As a user types a query, SnipSuggest 

recommends possible additions to various clauses in the 

query using relevant snippets collected from a log of past 

queries. As a user types a query, she can ask SnipSuggest 

for recommendations of what to add to a specific clause of 

her query. In response, SnipSuggest recommends small 

SQL snippets [3]. 

Explaining missing answers of queries is useful in various 

scenarios, including query understanding and debugging. 
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When queries are used to define multiple views, one may 

ask why, employee information is missing from both the 

employee register and the payroll views. Artemis 

algorithms are able to generate explanations for a set of 

missing tuples over a set of queries that include selection, 

projection, join, union, and aggregation and grouping 

(SPJUA). For explanations, it encodes the problem into a 

set of constraints and it combines existing data with new 

data [4]. 

 Database systems are having the capability that 

enables users to seek clarifications on unexpected query 

results. There are two existing models to explain why-not 

questions on query results. The first approach modifying 

some tuples in the database so, the result of the query on 

the modified database will include both the original result 

and the specified missing tuples. The second approach, 

explains missing tuples by identifying the manipulation 

operations in the query plan that are responsible for 

excluding the missing tuples [5]. 

 The top-k dominating query returns k data objects 

which dominate the highest number of objects in a dataset. 

Identify the importance and practicability of the query and 

define some of its potential extensions. A simple 

evaluation method for top-k dominating queries is based 

on skyline computation. Advantage of the top-k query is 

that the user is able to control the number of results. It 

might not always be easy for the user to specify an 

appropriate ranking function [6]. 

 For avoiding the above drawbacks answering the 

why-not questions on top-k queries are used, there are two 

algorithms to answer such why-not questions efficiently. 

First is a why-not top-k question and second is why-not 

dominating questions. The why-not questions are the users 

need to know why her expected tuples do not shown up in 

the query results i.e. the features of explaining missing 

tuples in database queries [1]. 
 

III. SYSTEM ARCHITECTURE 
 

As shown in Fig. 1, the user can give an input query to the 

algorithms. If user can specify the weighting value, the 

input query is given to why-not top-k question otherwise 

the query is given to why-not top-k dominating question.   
 

 

In the why-not top-k question users can provide W as 

input, which slightly limits its practicability and in why-

not top-k dominating question users need not to provide W 

as input. For generation of result a query-refinement 

approach is used. That tells the user how to revise her 

original queries so that the missing answers can be 

returned to the result. This approach defines that a good 

refined query should be (a) similar - have few edits 

comparing with the original query and (b) precise - have 

few extra tuples in the result, except the original result 

plus the missing tuples. This helps users to quantify their 

preferences as a set of weightings.  
 

A. WHY-NOT TOP-K QUESTION 

Suppose there is only one missing object m    . First, execute 

a progressive top-k query q'0 based on the weighting 

vector w    0 in the users original query q0, using any 

progressive top-k query evaluation algorithm and stop 

when m     comes forth to the result set with a ranking r0. If  

m     does not appear in the query result, report to the user 

that m     does not exist in the database and the process 

terminates. 

 If m     exists in the database, then randomly sample 

a list of weighting vectors S = [w    1,w    2,…,w    s] from the 

weighting space. For each weighting vector w    i ϵ S, then 

formulate a progressive top-k query q′
i
 using w    i as the 

weighting. Each query q′
i
 is executed by a progressive 

top-k algorithm, which progressively reports each top 

ranking object one-by-one, until the missing object m     
comes forth to the result set with a ranking ri. So, after s+1 

progressive top-k executions, we have s+1 refined queries 

q′
i
(ri , w′     

i) where i = 0, 1, 2,...,s, with missing object m     

known to be rank ri
th 

exactly. Finally, the refined query 

q′
i
(ri , w′     

i) with the least penalty is returned to the user as 

the answer. The least Penalty can be calculated by using 

following formula:  
 

Penalty(k',w    ') = λk

∆k

(r0−k0) + 
∆w

 1+ w0[i]2
              (1) 

 

In the above equation ∆k and ∆w are used to measure the 

quality of the refined query. Where ∆k = max 0, k′ −
k0and ∆w=w′−w0. The k′ is a refined query value is 

smaller than the original k0 value. r0 is the rank of the 

missing object m     under the original weighting vector w    0. 

To capture a users tolerance to the changes of k and w     on 

her original query q0 define a basic penalty model that sets 

the penalties λk  and λw  to ∆k and ∆w, respectively, where 

λk + λw = 1. 
 

B. WHY-NOT TOP-K DOMINATING QUESTION 

Answering why-not top-k dominating questions is similar 

to the answering top-k why-not Questions. Assume with 

the case where there is only one missing object m    . First, 

execute a top-k dominating query q0
′  using a progressive 

top-k dominating query evaluation algorithm and stop 

when m     comes forth to the result set with a ranking r0. If 

m     does not appear in the query result, we report to the user 

that m     does not exist in the database and the process 

terminates. If m     exists in the database, then draw a list of 

data value samples S = [x  1, x  2, … , x  s]. For each data value 
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sample x  i ϵ S, we modify m     values to be x  i and then 

execute a progressive top-k dominating query until m     
comes forth to the result set with a ranking ri. So, after s+1 

progressive top-k dominating executions, we have s+1 

“refined queries and modified values" pairs:  q0
′  r0 , m    =

m     ,  q1
′  r1 , m    =  x  1  ,…, qs

′  rs , m    = x  s . Finally, the 

pair with the least penalty is returned to the user as the 

answer. A top-k dominating query is composed of a result 

set size k and a special score function, which scores an 

object p   by the number of points that it can dominate. The 

query result is then the top-k objects with the highest 

scores. 
 

C. SKYLINE REFINED QUERIES 

Thus, a refined query is considered to be good if its 

dissimilarity and imprecision metrics are low [5]. Among 

all the possible refined queries for a why-not question, 

interested in the set of skyline refined queries defined as 

follows: Given two different refined queries Q1 and Q2, 

say that Q1 dominates Q2 if (1) both the metrics of Q1 are 

at least as low as those of Q2 and (2) for at least one of the 

metrics, Q1’s value is strictly lower than that of Q2’s. 

Defined a refined query Q′ to be a skyline refined query 

(or skyline query) if Q′ is not dominated by any other 

refined query. Thus, goal is to compute skyline refined 

queries to explain the question.  
 

D. ConQueR METHOD 

ConQueR, is Constraint-based Query Refinement, to 

explain why-not questions by automatically generating 

one or more refined queries. ConQueR is designed to be a 

similarity-driven approach where it tries to generate 

refined queries with low dissimilarity values before 

considering more precise refined queries that have higher 

dissimilarity values. Assume, Given a why-not question 

(S,C) for a query Q on database D, ConQueR will first 

consider refined queries  Q′  that have the same query 

schema as Q. That is, ConQueR tries to derive Q′ by 

simply modifying selection predicate(s) in Q to explain the 

why-not tuples while minimizing the imprecision metric. 

If such refined queries exist, ConQueR will only generate 

skyline refined queries that all share the same query 

schema as Q. However, if no such refined query exists, 

ConQueR then looks for refined queries that have a 

slightly different query schema, and so on. 

Thus, ConQueR effectively iterates over a sequence of 

query schemas QS1,…, QSk to search for refined queries: 

QS1 is the query schema of the input query Q, and schema 

QSi+1 is considered only if there are no refined queries 

with schema QS1,…,QSi. The sequence of query schemas 

considered is of increasing dissimilarity metric values, and 

if QSk is the first query schema in the sequence to contain 

refined queries, ConQueR will generate all skyline refined 

queries with schema QSk as possible explanations to the 

why-not question. 
 

IV. CONCLUSION 
 

User does not understand why her expected answers are 

missing in the query result. For this, answering why-not 

questions on two types of top-k queries, the basic top-k 

query where users need to specify the set of weightings, 

and the top-k dominating query where users do not need to 

specify the set of weightings because the ranking function 

ranks an object higher, if it can dominate more objects. A 

refined query with approximately minimal changes to the 

k value and their weightings is returned to the user. It can 

be used for multi-criteria decision as well as for 

approximate information from database. The work will be 

performed on numeric data as well as non-numeric data. 

Both the algorithms will able to return high quality 

explanations efficiently.  
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